リンクを新しいタブで開く
  1. 元に戻す
    やり直し
    コピー
    エクスポート
    書き換え
    テスト ツール
    その他のアクション
    • 作業報告
    • メール
    • リライト
    • スピーチ
    • タイトル ジェネレーター
    • スマート返信
    • エッセイ
    • ジョーク
    • Instagram 投稿
    • X 投稿
    • Facebook 投稿
    • ストーリー
    • 添え状
    • 履歴書
    • 職務明細書
    • 推薦状
    • 退職願
    • 招待状
    • グリーティング メッセージ
    • その他のテンプレートを試します
  1. Slow Sort is a recursive sorting algorithm based on the Divide and Conquer paradigm, similar to Merge Sort. However, it is intentionally inefficient and primarily used for educational purposes. The algorithm recursively divides the array into two halves, finds the maximum element, places it at the end of the sub-array, and then sorts the remaining elements.

    Algorithm Steps:

    1. Divide the array into two halves.

    2. Recursively sort the first half to find its maximum.

    3. Recursively sort the second half to find its maximum.

    4. Compare the two maxima and place the larger one at the end of the array.

    5. Recursively sort the array excluding the maximum element.

    Python Implementation:

    def slow_sort(arr, left, right):
    # Base case: If the array has one or no elements
    if left >= right:
    return

    # Find the middle index
    mid = (left + right) // 2

    # Recursively sort the first half
    slow_sort(arr, left, mid)

    # Recursively sort the second half
    slow_sort(arr, mid + 1, right)

    # Compare and place the maximum element at the end
    if arr[right] < arr[mid]:
    arr[right], arr[mid] = arr[mid], arr[right]

    # Recursively sort the array excluding the maximum
    slow_sort(arr, left, right - 1)

    # Example usage
    if __name__ == "__main__":
    arr = [6, 8, 9, 4, 12, 1]
    slow_sort(arr, 0, len(arr) - 1)
    print("Sorted array:", arr)
    コピーしました。
    フィードバック
    ありがとうございました!詳細をお聞かせください
  2. Slowsort - Wikipedia

    Slowsort Slowsort is a sorting algorithm. It is of humorous nature and not useful. It is a reluctant algorithm based on the principle of multiply and surrender (a parody formed by taking the opposites …

  3. Sort the array using slow sort - GeeksforGeeks

    2025年7月23日 · Approach: Like Merge Sort, Slow Sort is a Divide and Conquer algorithm. It divides the input array into two halves, calls itself the two halves, and then compares the maximum element of …

  4. もっと遅いソート #アルゴリズム - Qiita

    • シャッフル済みの要素数 9 の配列を 1回だけ整列するという、かなりしょぼい計算をした。 最初、要素数 10 にしたんだけど、10分たっても終わらなかったので 9 にした。 nabe 2022 だと、9要素の整列に3分以上を要した模様。人間のほうが速い。 この調子だと、10要素は40分ぐらいかな。
    qiita.com でさらに表示
  5. Slow Sort - YouTube

    2013年8月5日 · Visualization and "audibilization" of the Slow Sort algorithm.Sorts a random shuffle of the integers [1,50] using slow sort. It uses the implementation from ...

    • 著者: Timo Bingmann
    • 閲覧数: 33.7万
  6. Slowsort - Sorting Wiki

    2025年4月27日 · Slowsort is an esoteric sort based on the concept of "multiply and surrender", opposite to "divide and conquer". it runs in time, uses stack memory, and is unstable.

  7. あなたの興味がありそうな検索

  8. SortPedia - Interactive Sorting Algorithm Visualizer

    Slow Sort is a recursive, in-place sorting algorithm created by Andrei Broder and Jorge Stolfi. It was designed as a "pessimal" algorithm to illustrate concepts of profoundly bad complexity. It is based on …

  9. Slow Sort Algorithm

    The basic idea behind Slow Sort is to recursively divide the input array into two halves, similar to Merge Sort, and then find the maximum and minimum elements within each half.

  10. Sorting Algorithms: Slowest to Fastest - Built In

    2025年5月12日 · The fastest sorting algorithm is Quicksort or Merge sort, while one of the the slowest sorting algorithms is Bubble sort. Here's a review of all …

  11. Slow Sort - N64 Squid

    Slow Sort is an algorithm that was purposely designed to be as slow as possible. It is often described as a multiply-and-surrender algorithm in contrast to the divide …

  12. Slowsort - University of Wisconsin–Madison

    Slowsort is an in-place, stable sorting algorithm developed by Andrei Broder and Jorge Stolfi. It is a reluctant algorithm based on the principle of multiply and surrender.