リンクを新しいタブで開く
    • 作業報告
    • メール
    • リライト
    • スピーチ
    • タイトル ジェネレーター
    • スマート返信
    • エッセイ
    • ジョーク
    • Instagram 投稿
    • X 投稿
    • Facebook 投稿
    • ストーリー
    • 添え状
    • 履歴書
    • 職務明細書
    • 推薦状
    • 退職願
    • 招待状
    • グリーティング メッセージ
    • その他のテンプレートを試します
  1. Machine Learning (ML) projects in Python are an excellent way to apply theoretical knowledge to real-world problems. Below is a step-by-step guide to building an ML project, along with some project ideas for beginners and advanced learners.

    Steps to Build an ML Project

    1. Define the Problem Identify the problem you want to solve. For example, predicting house prices or detecting spam emails.

    2. Collect and Prepare Data Gather data from sources like Kaggle, UCI Machine Learning Repository, or APIs. Clean the data by handling missing values, duplicates, and outliers. Perform feature scaling and encoding for categorical variables.

    3. Exploratory Data Analysis (EDA) Use libraries like pandas, matplotlib, and seaborn to visualize data distributions and relationships.

    4. Choose an Algorithm Select a suitable algorithm based on the problem type: Classification: Logistic Regression, Random Forest. Regression: Linear Regression, Gradient Boosting. Clustering: K-Means, DBSCAN.

    5. Train and Evaluate the Model Split the dataset into training and testing sets using train_test_split from sklearn. Train the model and evaluate it using metrics like accuracy, precision, recall, or RMSE.

    6. Optimize the Model Use techniques like hyperparameter tuning (GridSearchCV, RandomizedSearchCV) to improve performance.

    7. Deploy the Model Deploy using frameworks like Flask or FastAPI for web applications or Streamlit for interactive dashboards.

    フィードバック
    ありがとうございました!詳細をお聞かせください
  2. 33 Machine Learning Projects for All Levels in 2026 - DataCamp

    • These advanced machine learning projects focus on building and training deep learning models and processing unstructured datasets. You will train convolutional neural networks, gated recurrent units, finetune large language models, and reinforcement learning models.
    datacamp.com でさらに表示
  3. 他の人も質問しています
  4. machine-learning-projects · GitHub Topics · GitHub

    2025年8月1日 · Python hands on tutorial with 50+ Python Application (10 lines of code) By @xiaowuc2. This repository showcases a selection of machine learning …

  5. 50+ AI & ML Projects with Python | Aman Kharwal - amanxai.com

    2025年1月24日 · Below is a list of 50+ AI & ML projects solved & explained with Python that you should try. So, if you are aiming for a career in Artificial Intelligence and Machine Learning, this list of 50+ AI …

  6. 20 Hands-On AI & Machine Learning Projects with …

    2025年3月9日 · Looking to dive deep into the world of Artificial Intelligence and Machine Learning? Whether you’re just getting started or sharpening your skills, …

  7. 100+ Python Machine Learning Projects with Source Code

    Machine Learning Project Source Code in Python -Examine and implement end-to-end real-world interesting machine learning project ideas from Marketing, Supply …

  8. Top 25 Machine Learning Projects in Python for Beginners & Experts

    2025年2月25日 · Boost your data science skills with 25 Python machine learning projects! From beginner to expert, build AI-driven applications with real-world impact.

  9. 5 Real-World Machine Learning Projects You Can Build …

    2025年4月21日 · In this guide, we outline five machine learning projects you can build over the weekend (literally!)—using publicly available datasets. For each …

  10. 5 Real-World AI/ML Projects You Can Build. | Python in …

    Here are five AI/ML projects that will teach you practical skills while building something genuinely useful — projects you can proudly showcase in your …