リンクを新しいタブで開く
  1. Cleaning data is a critical step in preparing datasets for machine learning (ML). It ensures the data is accurate, consistent, and ready for analysis. Below are the essential steps to clean data systematically:

    1. Understand the Dataset

    • Inspect the Data: Use .info() and .describe() to understand data types, missing values, and distributions.

    • Check for Duplicates: Identify duplicate rows using df.duplicated() and remove them with df.drop_duplicates().

    import pandas as pd
    df = pd.read_csv('data.csv')
    print(df.info())
    df = df.drop_duplicates()
    コピーしました。

    2. Handle Missing Values

    • Identify Missing Data: Use df.isnull().sum() to find columns with missing values.

    • Impute or Remove: Numerical: Replace with mean/median using SimpleImputer. Categorical: Fill with mode or "Unknown". Drop rows/columns if missing values are excessive.

    from sklearn.impute import SimpleImputer
    imputer = SimpleImputer(strategy='mean')
    df['Age'] = imputer.fit_transform(df[['Age']])
    コピーしました。

    3. Fix Structural Errors

    フィードバック
    ありがとうございました!詳細をお聞かせください
  2. Data Cleaning in ML - GeeksforGeeks

    • さらに表示

    2025年9月16日 · Data cleaning is a step in machine learning (ML) which involves identifying and removing any missing, duplicate or irrelevant data. Raw data (log file, transactions, audio /video …

  3. Summary Log data recorded by wireline tools are incomplete in most well locations. Vital information often needs to be predicted to precisely characterise the Earth’s subsurface. Here we describe a …

  4. Deep learning for anomaly detection in log data: A survey

    2023年6月15日 · Recently, an increasing number of approaches leveraging deep learning neural networks for this purpose have been presented. These approaches have demonstrated superior …

    欠落単語:
    • Data Cleaning
    次が必須:
  5. How to Clean Data for Machine Learning Best Practices …

    2025年1月24日 · This blog explores the importance of clean data, outlines best practices for data cleaning, highlights popular tools, and concludes with a step …

    欠落単語:
    • Log File
    次が必須:
  6. How to Clean Up Data for Machine Learning Using …

    2025年10月1日 · Learn how to clean data for machine learning using UltraEdit. Explore regex tools, encoding fixes, and tips to prep CSV/log data for AI models

  7. How to Perform Effective Data Cleaning for Machine …

    2025年7月9日 · In this article, I discuss how you can effectively apply data cleaning to your own dataset to improve the quality of your fine-tuned machine-learning …

    欠落単語:
    • Log File
    次が必須:
  8. Data cleaning and machine learning: a systematic literature review ...

    2024年6月11日 · We identify different types of data cleaning activities with and for ML: feature cleaning, label cleaning, entity matching, outlier detection, imputation, and holistic data cleaning.

    欠落単語:
    • Log File
    次が必須:
  9. Data Cleaning for Machine Learning - Databricks Community - 95410

    2024年10月28日 · Data cleaning is an essential data preprocessing step in preparing data for machine learning. The quality of data directly impacts model performance, and these processes ensure that …

    欠落単語:
    • Log File
    次が必須:
  10. Enhancing Log Analysis with Machine Learning (ML)

    2024年10月25日 · This article will define what log analysis is, how machine learning can enhance its operations, and how to integrate machine learning with log analysis.

  11. A Machine Learning Approach to Log Analytics: How to …

    11 行 · 2023年8月21日 · In this section, we’re going to list the best log analysis tools that use machine learning for monitoring, and define how to choose …

    欠落単語:
    • Data Cleaning
    次が必須: