The theory of Appell polynomials has long intrigued researchers due to its elegant algebraic structure and rich connections with differential equations. At its core, an Appell sequence is ...
Mathematics of Computation, Vol. 33, No. 148 (Oct., 1979), pp. 1251-1256 (6 pages) A polynomial representation of the hybrid methods for solving ordinary differential equations is presented. The ...
We solve polynomials algebraically in order to determine the roots - where a curve cuts the \(x\)-axis. A root of a polynomial function, \(f(x)\), is a value for \(x\) for which \(f(x) = 0\).
Roots can occur in a parabola in 3 different ways as shown in the diagram below: In diagram A, we can see that this parabola has 2 roots, diagram B has 1 root and diagram C has no roots. What type of ...
Here at VCF, we stumbled across a gigantic contraption that spanned several tables. Rube Goldberg machine this was not. Instead, this device actually does something useful! [Tim Robinson’s] ...
Let Φ(z) = ∑∞ 0 βjz j have radius of convergence $r (0 < r < \infty)$ and no singularities other than poles on the circle |z| = r. A complete solution is ...