ニュース
Zheng Yuan, Yuhong Yang, Combining Linear Regression Models: When and How?, Journal of the American Statistical Association, Vol. 100, No. 472 (Dec., 2005), pp. 1202-1214 ...
Linear and logistic regression models are essential tools for quantifying the relationship between outcomes and exposures. Understanding the mathematics behind these models and being able to apply ...
Parametric versus Semi/nonparametric Regression Models Course Topics Linear models, generalized linear models, and nonlinear models are examples of parametric regression models because we know the ...
Dr. James McCaffrey presents a complete end-to-end demonstration of linear regression using JavaScript. Linear regression is the simplest machine learning technique to predict a single numeric value, ...
Ching-Kang Ing, Tze Leung Lai, A STEPWISE REGRESSION METHOD AND CONSISTENT MODEL SELECTION FOR HIGH-DIMENSIONAL SPARSE LINEAR MODELS, Statistica Sinica, Vol. 21, No. 4 (October 2011), pp. 1473-1513 ...
Multiple regression and regression diagnostics. Generalised linear models; the exponential family, the linear predictor, link functions, analysis of deviance, parameter estimation, deviance residuals.
In this module, we will introduce generalized linear models (GLMs) through the study of binomial data. In particular, we will motivate the need for GLMs; introduce the binomial regression model, ...
現在アクセス不可の可能性がある結果が表示されています。
アクセス不可の結果を非表示にする